A comparison of mass removal, thermal injury, and crater morphology of cortical bone ablation using wavelengths 2.79, 2.9, 6.1, and 6.45 microm.

نویسندگان

  • Jong-In Youn
  • Paula Sweet
  • George M Peavy
چکیده

BACKGROUND AND OBJECTIVE Previous investigations have reported evidence of wavelength dependence on cortical bone ablation. This study used mid-infrared laser wavelengths generated by a free electron laser (FEL) and mass removal measurements to further examine the ablation efficiency of a wavelength (2.79 microm) not previously reported and three wavelengths (2.9, 6.1, and 6.45 microm) previously demonstrated by crater morphology alone to be efficient for cortical bone removal. STUDY DESIGN/MATERIALS AND METHODS The wavelengths examined were provided by an FEL emitting 4 microseconds macropulses consisting of 1-2 picoseconds duration micropulses delivered at 350 picoseconds intervals. The mass removal measurements were conducted by a microbalance, and the collateral thermal injury and crater morphology of cortical bone were examined by light microscopy following standard histologic processing. RESULTS The study demonstrated that the highest mass removal was achieved at lambda = 6.1 microm followed by, in order, lambda = 2.9, 6.45, and 2.79 microm. The zones of thermal injury and crater morphology created in cortical bone at the selected wavelengths were examined at the radiant exposure of 28.3 J/cm2. Ablation using lambda = 6.1 microm provided the largest crater size and the least collateral thermal injury. The greatest amount of collateral thermal injury was produced by lambda = 2.79 microm at both the sides and base of the ablation crater. CONCLUSIONS The mass removal of cortical bone produced by FEL ablation at selected mid-IR wavelengths was measured as a function of incident radiant exposure. The ablation efficiency was found to be dependent upon wavelength. The lambda = 2.79 microm did not offer any improvement over the other wavelengths evaluated, suggesting that a potential shift in the dynamic optical properties of water during tissue irradiance with the FEL does not present an advantage to the cutting of cortical bone. The lambda = 6.1 microm provided the highest ablation efficiency with deepest crater and the least amount of collateral thermal injury.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free electron laser ablation of articular and fibro-cartilage at 2.79, 2.9, 6.1, and 6.45 microm: mass removal studies.

BACKGROUND AND OBJECTIVE The wavelength and tissue-composition dependence of cartilage ablation was examined using selected mid-infrared laser wavelengths. STUDY DESIGN/MATERIALS AND METHODS The mass removal produced by pulsed laser ablation of articular and fibro-cartilage (meniscus) were measured. The wavelengths examined were 2.79, 2.9, 6.1, and 6.45 microm and provided by a free electron ...

متن کامل

Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea.

We ablated porcine corneas with a free electron laser tuned to either 2.77 or 6.45 microm, two matched wavelengths that predominantly target water and protein, respectively. The ejected nonvolatile debris and the crater left behind were examined by circular dichroism, Raman spectroscopy, and scanning electron microscopy to characterize the postablation conformation of collagen proteins. We foun...

متن کامل

Comparison of Transplantation of Bone Marrow Stromal Cells (BMSC) and Stem Cell Mobilization by Granulocyte Colony Stimulating Factor after Traumatic Brain Injury in Rat

Background: Recent clinical studies of treating traumatic brain injury (TBI) with autologous adult stem cells led us to compare effect of intravenous injection of bone marrow mesenchymal stem cells (BMSC) and bone marrow hematopoietic stem cell mobilization, induced by granulocyte colony stimulating factor (G-CSF), in rats with a cortical compact device. Methods: Forty adult male Wistar rats w...

متن کامل

Evaluation of Crater Width in Nanosecond Laser Ablation of Ti in Liquids and the Effect of Light Absorption by Ablated Nano-Particles

Micro size craters were created by interaction of nanosecond laser beam with titanium target in liquid media. The dimension of crater i.e. depth and width is important in some applications such as micromachining. When the interaction occurs in liquid environment, the ablated materials from the target expand into the liquid. The ablated material can affect the interaction process if the ablated ...

متن کامل

Noninvasive measurement of ablation crater size and thermal injury after CO2 laser in the vocal cord with optical coherence tomography.

OBJECTIVE To characterize tissue destruction after CO(2) laser-ablation of the vocal cords with the use of optical coherence tomography (OCT). STUDY DESIGN AND SETTING OCT was used to image fresh porcine vocal cords after laser ablation. OCT and histology estimates of the ablation crater dimensions and the depth of thermal injury were obtained. RESULTS The vocal cord substructures up to 2.2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Lasers in surgery and medicine

دوره 39 4  شماره 

صفحات  -

تاریخ انتشار 2007